Wikipedia readership around the UK general election

I already have written about the Wikipedia-Shapps story. So, that is not the main topic of this post! But when that topic was still hot, some people asked me whether I think anyone ever actually reads the Wikipedia articles about politicians? Why should it be important at all what is written in those articles? This post tackles that question. How much do people refer to Wikipedia to read about politics, specially around the election time?

Let’s again consider the Shapps’ case. Below, you can see number of daily page views of  of the Wikipedia article about him.

Screenshot from 2015-05-04 22:57:35

As you see, there are two HUGE peaks of around 7,000 and 14,500 views per day on top of a rather steady daily page view of sub-1000. The first peak appeared when “he admitted that he had [a] second job as ‘millionaire web marketer’ while [he was] MP“, and  the second one when the Wikipedia incident happened. Interesting to me is that while the first peak is related a much more important event, the second peak related to what I tend to call a minor event, is more than twice as large as the first one. Ok, so this might be just the case of Shapps and mostly due to media effects surrounding the controversy. How about the other politicians, say the party leaders? See the diagrams below.

Screenshot from 2015-05-04 22:57:45

A very large peak is evident in all the curves for all the party leaders with a peak of 22,000 views per day for Natalie Bennett, the leader of the Green party. Yes, that’s due to the iTV leaders’ debate on the 2nd of April. If you saw our previous post on search behaviour, you shouldn’t be surprised; surprising is the absence of a second peak around the BBC leaders’ debate on 16th of April, especially when you see the diagrams from our other post on Google search volumes.

How about the parties? How many people read about them on Wikipedia? Check it out below.

Screenshot from 2015-05-04 22:57:52

Here, there seems to be a second increase in the page views after the BBC debate on 16th April. Moreover, there is an ever widening separation between the curves of Tory-Labour-UKIP and LibDem-Green-SNP curves. This is very interesting, as Tories and Labours are the most established English parties, whereas the UKIP is among the newest ones. That’s very much related to our project on understanding the patterns of online information seeking around election times.

Elections and Social Media Presence of the Candidates

Some have called the forthcoming UK general election a Social Media Election. It might be a bit of exaggeration, but there is no doubt that both candidates and voters are very active on social media these days and take them seriously. The Wikipedia-Shapps story of last week is a good example showing how important online presence is for candidates, journalists, and of course voters. We don’t know how important this presence is in terms of shaping the votes, but at least we can look into the data and gauge the presence of the candidates and the activity of the supporters. In this post and some others we present statistics of online activity of parties, candidates, and of course voters. For an example, see the previous post on the searching behaviour of citizens around the debate times.

Who is on Twitter?

Candidates and parties are very much debated by supporters on social media, particularly Facebook and Twitter. But how active are candidates themselves on these platforms? In this post we show simply how many candidates from each party and in which constituencies have a Twitter account. Some of them might be more active than others and some might tweet very rarely, and we will analyse this activity in the next posts. Here we count only who has any kind of publicly known account.

t_all_small

Geographical distribution of candidates who have Twitter account.

The figure above shows the geographical distributions of candidates for each party and whether they have a Twitter account. There are some interesting results in there. For example, Labour has the largest number of Twitter-active candidates, whereas ALL the SNP candidates tweet. While LibDem and Green parties have the same number of accounts, normalised by the overall number of constituencies that they are standing in, Green seems to be more Twitter-enthusiastic. UKIP loses the Twitter game both in absolute number and proportion.

Who is on Wikipedia?

Having a Twitter account is something of a personal decision.  A candidate decides to have one and it’s totally up to them what to tweet. The difference in the case of Wikipedia, is that ideally candidates would not create or edit one about themselves. Also the type of information that you can learn about a candidate on their Wikipedia page is very different to what you can gain by reading their tweets.

Geographical distribution of the candidates, whom Wikipedia has an article about.

Geographical distribution of the candidates, whom Wikipedia has an article about.

The figure above shows the constituencies that the candidates standing in are featured in the largest online encyclopaedia, Wikipedia. Here, Tories are the absolute winners, in terms of the number of articles. Greens are the least “famous” candidates and LibDem are well behind the big two. In the next post we will explore often voters turn to Wikipedia to learn about the parties and candidates, and I’m sure by reading that you’ll be convinced that being featured on Wikipedia is important!

Gender?

All right, so far, Labour won Twitter presence and Tories took Wikipedia (remember all the SNP’s also have a Twitter account). But how about the gender of the candidates? Is there any gender-related feature in social presence pattern of the candidates?

First let’s have a look at the gender distribution of the candidates.

Geographical distribution of the candidates colour-coded by gender.

Geographical distribution of the candidates colour-coded by gender.

As you see in the figure above, there are fewer female candidates than male ones across all the parties. Only 12% of the UKIP candidates are female while the Greens have the highest proportion at 38%. Tories sit right next to UKIP on the list of the most male oriented parties. There is also a clear pattern that most of the constituencies in the centre have male candidates.

How about social media?

Among all the candidates, 20% of male candidates are featured in Wikipedia, whereas this is about 17% for female candidates. Almost half of the Tories male candidates are in Wikipedia, whereas this goes down to 28% for their female counterparts. Only Labour female candidates have more coverage in Wikipedia compared to the males of the party, but the difference is marginal. ّIn all the other parties, males have a higher coverage rate. The tendency of Wikipedia to pay more attention to male figures is a very well known fact. 

Twitter is different. Slightly more female candidates (76%) have a Twitter account than male candidates (69%). Almost all (96%) of Labour females tweet, and Tory female candidates are more active than their male candidates. This pattern however is lost for the UKIP candidates, as 52% of their males are on Twitter compared to only 44% of their female candidates (who have the lowest rate among all the party-gender groups).

Data

The data that we used to produced the maps and figures come mainly from a very interesting crowd-sourced project called yournextmp. However, we further validated the data using the Wikipedia and Twitter API’s. If you want to have a copy, just get in touch!

When and Where is Citizen Science happening?

Citizen Science is research undertaken by professional scientists and members of the public collaboratively. The best example of it is Zooniverse.

Since it first launched as a single project called Galaxy Zoo in 2007, the Zooniverse has grown into the world’s largest citizen science platform, with more than 25 science projects and over 1 million registered volunteer citizen scientists. While initially focused on astronomy projects, such as those exploring the surfaces of the moon and the planet Mars, the platform now offers volunteers the opportunity to read and transcribe old ship logs and war diaries, identify animals in nature capture photos, track penguins, listen to whales communicating and map kelp from space.

We have been running a project to reveal the taxonomy and ecology of contributions to the Zooniverse. The project is now towards its end. And we have just released the first short report:
After dinner: the best time to create 1.5 million dollars of ground-breaking science

Count this! In celebration of the International Year of Astronomy 2009, NASA’s Great Observatories. Image: Nasa Marshall Space Flight Center.

Wikipedia sockpuppetry: linking accounts to real people is pure speculation

Will the real Grant Shapps please stand up? ViciousCritic/Totally Socks, (CC BY-NC-SA)

You must have heard about the recent accusation of Grant Shapps by the Guardian. Basically, the Guardian claims that Shapps has been editing his own Wikipedia page and “Wikipedia has blocked a user account on suspicions that it is being used by the Conservative party chairman, Grant Shapps, or someone acting on his behalf”.

In a short piece that I wrote for The Conversation I try to explain how these things work in Wikipedia, what they mean,  and basically how unreliable these accusations are.

There are two issues here:

First, conflict of interest, for which Wikipedia guidelines suggest that “You should not create or edit articles about yourself, your family, or friends.” But basically it’s more a moral advice, because it’s technically impossible to know the real identity of editors. Unless the editors disclose their personal information deliberately.

The second point is that the account under discussion is banned by a Wikipedia admin not because of conflict of interest (which is anyway not a reason to ban a user), but Sockpuppetry: “The use of multiple Wikipedia user accounts for an improper purpose is called sock puppetry”. BUT, Sockpuppetry is not generally a good cause for banning a user either. It’s prohibited, only when used to mislead the editorial community or violate any other regulation.

Sock puppets are detected by certain type of editors who have very limited access to confidential data of users such as their IP-addresses, their computed and operating systems settings and their browser. This type of editor is called a CheckUser, and I used to serve as a CheckUser on Wikipedia for several years.

In this case the accounts that are “detected” as sock puppets have not been active simultaneously — there is a gap of about 3 years between their active periods. And this not only makes it very hard to claim that any rule or regulation is violated, but also, for this very long time gap, it is technically impossible for the CheckUser to observe any relation between the accounts under discussion.

Actually, the admin who has done the banning admits that his action has been mostly because of behavioural similarity (similarity between the edits performed by the two users and their shared political interests).

Altogether, I believe the banning has no reliable grounds and it’s based on pure speculation, and also the Guardian accusations are way beyond what you can logically infer from the facts and evidence.

How Big Data will change our lives and our understanding of them

… If the invention of telescopes provided us with the ability to understand how galaxies behave, and the microscope allowed us to find the cure of such a huge amount of diseases, this century we are going to understand much more about the social systems because of big data. There is no doubt that humans are much more complicated than atoms or even planets and stars, but with the help of powerful mathematical tools and our ever-faster computers we will be able to find and reveal the universal laws of human societies in a numerical framework.

… Read More at Dataconomy. 

Image Credit: William Pearce

Breaking news in a connected world

The bitterness of the tragedy is the same, what has changed is the way that information spreads.

I heard about the Boston Marathon Bombing, first when I was preparing to go to bed, and as a recently emerged habit, I was doing my bed-time-Facebook “friend feed” check. The news-line was so shocking that I kept “browsing” for the next few hours. It was quite different to the case of 9/11 attacks when I encountered the story while having my afternoon snack and watching TV in a local snack-bar.

Although it was also hard to believe when I was watching the videos of the smoking buildings on TV some eleven years ago, but this time I was much more suspicious about what I was witnessing on my Facebook friend feed. I thought may be it’s a late arriving “April fool’s joke”! It’s not a totally unreasonable suspicion, given the fact that generally a TV news story is supposed to be much more reliable than a random post by a random guy on his Facebook wall. Then I checked Wikipedia (believe me or not, it’s usually the fastest in such cases, and I don’t have a TV!). I searched for “Boston” in Wikipedia search field and I ended up with a yet very short article titled “2013 Boston Marathon bombings“, and it became quite evident that something nasty has happened.

Although the nature of the terrorist attacks, the emotions involved in and evoked by, the bitterness of the memory, etc, have not changed much during the last decades, but the way of information exposure around these topics, as well as any other “breaking news” has changed dramatically.
The recently developed bottom-up social media offer totally different channels for information dissemination with their own pros and cons.

The rapid spread and deep penetration of information brought up by the social media is undeniable. However, in non-hierarchical structure of news production no one is responsible for the accuracy and correctness of the information, apart from the “citizen journalists” who produce and consume the information at the same time. In addition to that, the type of multimedia materials produced now on breaking news are also significantly different. Most of the videos and photos on such events are produced by “amateur crowed journalists” with their smart phones in hand. However they could draw a fairly accurate and multidimensional picture of the event in an incredibly short time. This could be quite valuable in cases like recent Iran earthquake where much earlier than the official sources could provide information on the casualties and damages caused by the earthquake in rural area and small villages with no official media coverage, you could see dozens of photos and even videos uploaded to the Web.

Publishing uncovered photos of suspects and asking citizens to help the police to spot them is a rather classic method, and has been in use for many years. However, new technologies could again be of great help in this field too. Do not forget that in the case of the marathon bombing, the police tracked the suspects by locating the cell-phone of the driver of the car hijacked by them. I believe this can go much further, remembering that a team from MIT could find 10 red balloons spread over the USA within the 2009 DARPA Network Challenge in less than 9 hours using crowd-sourcing and with the help of around 5000 random participants from public.

Back to the case of natural disasters, when proper distribution of resources and aids within the first few hours after the event, are extremely important and could decrease the casualties significantly, crowd-sourced information could potentially play an important role in assigning priorities and spotting regions in crucial conditions.

A less technically important topic yet with great deal of humanity and emotional aspects of socially connected world of today is the way that social media could provide a common medium to share emotions and sympathies with the people suffered in cases including natural disasters, terrorist attacks and any other of this kind. I remember that in 2001, people in Tehran went to the streets and light candles in memory of the victims of the 9/11 terrorist attack, however I’m not sure whether the suffered families and other USA citizens were exposed to this through the main-stream media. This year it was much easier to send a massage of condolence directly to the attacked nation by using the #preyforbostin “hashtag” in twitter. Therefore it’s no wonder that the hashtags of #preyforboston and #preyforiran, both became “trend” in twitter in mid-April 2013.

How much Wikipedia could tell us about elections

IMPORTANT NOTE: this post does not aim at predicting the results of any election. This is just a report on some publicly available data and does not draw any conclusion on it. 

In few hours, vote casting for Iranian presidential election, 2013 starts. And within few days (may be one or two) the next president of Iran for the forthcoming four years will be officially announced. This is not only an important event for all Iranians but it also could significantly impact the short or even long term history of the region and even the world, given the complicated internal and international political situation of Iran. Clearly this discussion is out of my expertise and interests and is not the goal of this post.

election1

One of the main differences between Iranian elections and many other countries’ is that most of the time, the candidates are not known until very close to the election date. The process of self-nomination (registration), and then approval and pre-selection of candidates by the Guardian Council, and official announcement of campaigning candidates is rather complicated and unpredictable. In short, almost no one knows the candidates until about a month before election dates.

The rather short period of election campaigns makes it very important how to inform the voters about the programmes and plans of the candidates as well as their previous political biography. Of course online material and social networking could play an important role in bridging between candidates and voters. Among others, Wikipedia is one of the sources that citizens refer to in order to gather at least some basic information about the candidates.

This time, there have been 8 candidates officially announced by the Ministry of Interior, from which 2 have withdrawn later. I did a simple count on the number of edits, number of unique editors, and number of page views of the Persian Wikipedia pages of those 8 candidates from May 7th (start of registration) up to now.  The results are presented in the following chart. To my surprise, there hasn’t been massive editorial work on the pages within this period (180 edits at most). However, page view numbers are relatively large, with a maximum of 180,000 hits during the same period and for the same candidate with the maximum number of edits by maximum number of unique editors. If I were a candidate, I’d have put more effort in order to complete and groom my Wikipedia page! As it’s quite visible!

More interestingly, those candidates with higher page view statistics are commonly known to have higher chances of success according to official and unofficial polls during the last few weeks (I don’t believe in any kind of  survey-based opinion mining, by the way!).

Another interesting aspect of page view statistics, is of course its temporal evolution. In the next diagram I show the number of daily views for the top-4 candidates (according to the total number of page views and excluding Aref, who has withdrawn).

election2

On May 21st, the final list of 8 candidates was announced and it’s the reason for the second peak in all 4 lines and it’s even higher for Jalili because his acceptance as a candidate was kind of a surprise and people apparently has started to know him more. The following bumps in the page view numbers of candidates are mainly due to their presence in either live TV debates or their campaign meetings. Finally, the most interesting and relevant jump is the one of Rouhani, just 2-3 days ago.Among those 4 candidate, Jalili was the least expected and known candidate who registered on the last day of registration and it produced the first peak in his page views.

The only significant event during this period was the withdrawal of Aref, which could be seen as a supportive action for Rouhani (although never mentioned explicitly).

I’d like to emphasise that I’m not trying to do any prediction based on this low-dimensional, sparse data, but if you are interested in predictions, see our soon-to-be-published paper on Early Prediction of Movie Box Office Success based on Wikipedia Activity Big Data or read about it in the Guardian.